CBSE TEST PAPER 8TH MATHEMATICS SA-1
1. What least
number must be subtracted from 7250 to get a perfect square? Also, find the
square root of this perfect square
2. What is
the least number by which 12348must be divided to obtain a perfect square?
3. Find the cost of erecting a fence around a square field
whose area is 9 hectares if fencing costs Rs 3.50
per metre
4. Find the
least number of six digits which is a perfect square. Find the square root of
this number.
5. Divide (1)
x3 - 1 by x - 1
(2) 7 +15x -13x2 +5x3 by 4 - 3x + x2
6. . x+ y + z = 0, prove that x 3+ y3 + z3 = 3xyz. Or, Factorize :
(a8 – b8)
7. If ( x2 + 1/x2) = 83 . Find X3- 1/X3
Or, , Factorize (i) 25a² – 4b² + 28bc –
49c² (ii) 5y² – 20y – 8z +
2yz
8. A motor boat covers a certain distance downstream
in a river in 5 hours. It covers the same distance
upstream in 6 hours. The speed of water is 2 km/hr . Find
the speed of the boat in still water.
9. Three prizes are to be distributed in a quiz contest.
The value of the second prize is five sixths the value of
the first prize and the value of the third prize is four –
fifths that of the second prize. If the total value of three
prizes is Rs. 150, find the value of each prize.
10. (a) Each side of a triangle is increased by 10 cm. If
the ratio of the perimeters of the new triangle and the
given triangle is 5 : 4, find the perimeter of the given
triangle
(b) The difference between two positive integers is 36.
The quotient, when one integer is divided by the
other is 4. Find the two integers.
11. Factorize
(1 x4 – (y + z)4
(2) y2 –7y
+12
(3) 6xy – 4y + 6 – 9x
(4) a4 – 2a²b² + b4 (5)
(x² – 2xy + y²) – z²
8th Factorization
1. Factorization
(1) (a + b ) (1 – c ) – (b +
c ) ( 1 – c )
(2) 1 6 a2
+ 40 a b + 25 b2
(3) 4x2/9 - 2/3 x
y + y2 /4
(4) 5x2yz
- 5 x3y
(5) 18 q2 +
338 p2 - 1 5 6 p q
(6) -108 x2 -
363 y2 + 369 x y
2. Factorize
(1) 16- 4x2
(2) 20 x3 –
45 b4x
(3) 4a2 –
9 b2 – c2 - 6bc
4) 25 ( x + 2y )2
- 36 (2x-5y)2
(5) a2 +
2 a b + b2 – c2 -2cd –d2
3. Factorize using a2+b2+c2 +2ab+2bc+2ca
(1) x2 + y2 + 25 z2 – 2 x y – 10 y z + 10 z x
(2) 9x2 + 4y2 + 49z2 – 12 x y + 28 y z –
42 z x
(3) 4x6 + 9y6 +
16 x 6 + 12 x3 y3 + 16 x3 z3 +
24 y3z3
(4) a8 + 256 b8 +
96 a4b4-16a3b2 – 256a2b6
4. Factorize (x + a) (x + b) = x2 +
(a + b) x +a b
(1) x2+7x+ 10
(2) x2+x-20 (3) x2-4x-21
(4) 15x2 + 13x +
2
(5) -6x2 - 13x+5
5. Factorize
(1) 125 a3 + 150 a2b
+ 60 ab3 + 8ab3
(2) x6 – 12
x4 b4 c + 6a2b5c2 +
b6c3
(3) 81a3 + 24b3
(4) 64a3b2 –
125 b5 (5) 16 a3 – 54 b3
(6) 8X + 1 (7) –a3 - 27b3
(8) 729a6 - 1
(9) 8m3 + 64 (10) 1000 – 343 a9
6. Find the following products:
(1) (9m + 2m )( 81m2 -18mn
+ 4n2)
(2) (5 - 2x ) (25 +10x + 4x2)
(3) (3 + 5/x ) ( 9 – 15/x + 25/x2)
7. Find the value of 27x2 + 64y2 +
36xy(3x + 4y) , when x = 5 and y = -3.
8. Using the identity (x + a) (x + b) = x2 +
(a + b)x + a b, evaluate 98 ´ 97
9. x + y + z = 0, prove that x 3+ y3 +
z3 = 3xyz.
10. Factorize
(1) m4 –
256
(2) y2 –7y +12
(3) 6xy – 4y + 6 – 9x
(4) x4 – (y + z)4
(5) a4 – 2a²b² + b4
(6) (l + m) ² – 4lm
(7) (x² – 2xy + y²) – z²
(8) 25a² – 4b² + 28bc – 49c²
(9) 5y² – 20y – 8z + 2yz
(10) a8 – b8
8th Linear Equations In One and two Variable
1. The perimeter of a rectangular swimming pool is 154
metres. Its length is 2m more than twice its breadth.
What are the length and breadth of the pool.
2. Sum of two numbers is 95. If one exceeds the other by
15 find the numbers.
3. Two numbers are in the ration 5:3. If they differ by
18, find these numbers
4. Three consecutive integers add up to 51. What are these
integers?
5. The sum of three consecutive multiples of 8 is 888.
Find the multiple.
6. Three consecutive integers are as such when they are
taken in increasing order and multiplied by 2, 3, and
4 respectively, they add up to 74. Find these numbers.
7. The number of boys and girls in a class is in 7:5 ratio.
The number of boys is 8 more than that of girls. Fin
their numbers.
8. The ages of Rahul and Haroon are in the ratio of 5:7.
Four years from now sum of their ages will be 56
years. Find their present age.
9. Baichung’s father is 26 years younger than Baichung’s
grandfather and 29 years older than Baichung. The
sum of their ages is 135. Find their ages.
10. Fifteen years from now Ravi’s age will be 4 times his
current age. What is his current age.
11. Lakshmi is a cashier in a bank. She has notes of
denominations of Rs. 100, 50 and 10 respectively. The
ratio of number of these notes is 2:3:5 respectively. The
total cash with Lakshmi is 4,00,000. How many
notes of each denomination does she have?
12. I have total Rs 300 in coins of denominations of Rs.1,
Rs.2, and Rs. 5.The number of Rs. 2 coins is 3
times the number of Rs. 5 coins. The total number of coins
is 160. How many coins of each denomination
are with me.
13. The organizers in an essay competition decide that
winner will get a prize of Rs. 100 and a participation
who doesn’t win gets a prize of Rs. 25. The total prize
money distributed is Rs. 3,000. Find the number of
winners if the total number of participants is 63.
14. If in a rational number denominator is greater than
numerator by 8. If you increase the numerator by 17
and decrease the denominator by 1, you get 3/2 as result.
Find the number.
15. Amina thinks of a number and subtracts 5/2 from it. She
multiplies the result by 8. The final result is 3
times her original number. Find the number
16. A positive number is 5 times another number. If 21 is
added to both the numbers then one of the new
numbers becomes twice of another new numbers. Find the original
numbers.
17. Sum of the digits of a two digit number is 9. When we
interchange the digits the new number is 27
greater than the earlier number. Find the number.
18. One of the digits of a two digit number is three times
the other digit. If you interchange the digits and add
the resulting number to original number you get 88 as
final result. Find the numbers.
19. Sahoo’s mother’s present age is six times Sahoo’s
present age. Five year from now Sahoo’s age will be
one-third of his mother’s age. Find their current age.
20. There is a narrow rectangular plot. The length and
breadth of the plot are in the ratio of 11:4. At the rate
of Rs. 100 per metre it will cost village panchayat
Rs.75000 to fence the plot. What are the dimensions of
the plot.
21. Hasan buys two kinds of cloth materials for school
uniform. Shirt material cost him Rs. 50 per metre and
trousers material cost him Rs. 90 per metre. For every 2
metres of the trousers material he buys 3 metres of
shirt material. He sells them at 12% and 10% profit
respectively. His total sale is Rs. 36,660. How much
trousers material did he buy? ( 200m)
22. Half of a herd of deer are grazing in the field and
three fourths of the remaining are playing nearby. The
rest 9 are drinking water from the pond. Find the total
number of deer in the herd.
23. A grandfather is 10 times older than his
granddaughter. He is also 54 years older than her. Find their age.
24. A man’s age is three times his son’s age. Ten years
ago his age was five times his son’s age. Find their
current age.
25. Hari and Harry’s age are in the ratio of 5:7.
Four years later the ratio of their ages will be 3:4. Find their
current age.
8th Algebraic Expression & Compound Interest
1. If ( x + 1 / x ) = 4, Find the value of ( x2 + 1/x2 ) and (x4
+ 1/x4 )
2. If ( x - 1/ x ) = 3 .Find the value of (x3 + 1/x3 )
3. Find the remainder obtained by dividing x3 + 3 x2 - 5x + 4 by
x + 1
4. Evaluate using algebraic identities (54)2 ; (78)2; (999)2
5. If x - y = 7, x y = 9 Find the value of x2 + y2
6. If x + y = 12 , x y = 27 Find the value of x3 + y3
7.
If a2 + b2 + c2 =20 , a + b + c = 6 find a b + b c + ca
8.
If ( x2 + 1 / x2 ) = 83 . Find (x3 - 1 / x3 )
9.
What must be subtracted from 4p2 - 2pq - 6q2 - r +5 to get - p2 + p q - 8q2 -
2r+5
10.
Factorise a3 + b3 + c3 - 3 a b c
11.
Devide
(1)
x3 - 1 by x - 1
(2)
7 +15x -13x2 +5x3 by 4 - 3x + x2
12.
Evaluate
(1)
1.5 3 - 0.93 - 0.63
(2)
(a - b) 3 + (a + b) 3
(3)
(x + 2y -3z)2 + (x - 2y +3z)2
13.If
(x4 + 1 / x4 ) = 47 find the value of (x3 + 1 / x3 )
14.
Find the product of
(1)
(x4 + 1/x4 ) and ( x + 1/x )
(2)
(2x2 + 3x - 7)(3x2 -5x - 4)
15.Two
adjacent side of a rectangle are 5x2-3y2 and x2 - 2xy Find its perimeter
16.The
perimeter of a triangle is 6p2 - 4p + 9 and two of its adjacent side are
p2
- 2p + 1 and 3 p2 - 5p + 3. Find third side of triangle.
17.
Find the least no. of 5 digits which is perfect square.
18.
Find the greatest num. of 6 digits which is perfect square.
19.
Evaluate
(1)
(5-1 x 3-1 )-1 x 6-1 (2) ( 23x+1 +10 ) / 7 = 6
(3) [52x+1]/ 25 = 125
(4) (4/9)4 x (4/9) - 7 = (4/9) 2x – 1
Compound Interest
1. You invest Rs 5000 at 12% interest compounded annually.
How much is in the account after 2 years,
assuming that you make no subsequent withdrawal or deposit?
2.Find the amount and the compound interest on Rs 4000 at 10%
p.a. for 2½ years.
3.A man invests Rs 5000 for three years at a certain rate
of interest, compounded annually. At the end of
one year it amounts to Rs 5600. Calculate (i) the rate of
interest per annum, (ii) the interest accrued in the
second year, (iii) the amount at the end of the third year.
4. A sum of Rs 9600 is invested for 3 years at 10% per
annum at compound interest. (i) What is the sum
due at the end of the first year? (ii) What is the sum due
at the end of the second year? (iii) Find the
compound interest earned in two years. (iv) Find the
difference between the answers (ii) and (i) and find the
interest on this sum for one year. (v) Hence write down the
compound interest for the third year.
5. Find the difference between the S.I. and C.I. on Rs
2500 for 2 years at 4% p.a., compound interest
reckoned semi-annually.
6. Find the amount and the compound interest on Rs 8000 in
2 years if the rate is 10% for the first year and
12% for the second year.
7. A man invests Rs 6500 for 3 years at 4·5% p.a. compound
interest reckoned yearly. Income tax at the
rate of 20% is deducted at the end of each year. Find the amount
at the end of the third year.
8. Calculate the compound interest for the second year on Rs
8000 invested for 3 years at 10% p.a.
Find the sum which amounts to Rs 9261 at 10% p.a. compound
interest for 18 months, interest payable half-
yearly.
9. On what sum will the compound interest for 2 years at 5% p.a.
be Rs 246?
10. On what sum will the compound interest (reckoned
yearly) for 3 years at 6¼% per annum be Rs
408·50?
11. A man invests Rs 1200 for two years at compound
interest. After one year his money amounts to Rs 1275. Find the rate of
compound interest. Also find the amount which the man will get after 2 years
correct
to the nearest paise.
12. At what rate percent per annum compound interest will Rs
2000 amount to Rs 2315·25 in 3 years?
If Rs 50000 amounts to Rs 73205 in 4 years, find the rate of
compound interest payable yearly.
13. In what time will Rs 15625 amount to Rs 17576 at 4% per
annum compound interest?
14. In what time will a sum of Rs 2500 produce Rs 309 at 6% per
annum compound interest?
15. In what time will a sum of Rs 800 at 10% per annum compounded
half-yearly produce Rs 126·10?
16. The simple interest on a sum of money for 2 years at
4% p.a. is Rs 450. Find the compound interest on
this sum of money at the same rate (i) for 1 year if the
interest is reckoned semi-annually. (ii) for 2 years if the interest is
reckoned annually.
17. At what rate of compound interest will Rs 625 amount
to Rs 729 after 2 years? Also find the maturity
value of Rs 625 after 2 years at the above rate of simple
interest.
18. Ram and Bhola each borrow equal sums for 3 years at
10% p.a. simple interest and compound interest
respectively. At the time of repayment, Bhola has to pay
Rs 372 more than Ram. Find the sum borrowed
and interest paid by each.
19. The difference between the compound interest for a
year payable half-yearly and the simple interest on a
certain sum of money lent out at 10% p.a. for a year is Rs 15.
Find the sum of money lent out.
20. The difference between compound interest and simple
interest in 3 years at 10% p.a. reckoned yearly is
Rs 18·60. Find the sum and the compound interest.
21. The amount at compound interest which is calculated
yearly on a certain sum of money is Rs 1250 in one
year and Rs 1375 in two years. Calculate the rate of interest.
22. A certain sum of money amounts to Rs 10584 in two
years and to Rs 11113·20 in three years, interest
being compounded annually. Find the interest rate percent and
the original sum.
23. The compound interest and the simple interest on the
same sum of money at the same rate percent per
annum are Rs 410 and Rs 400 respectively. Find the rate of
interest and the sum of money.
24. The compound interest calculated yearly on a certain
sum of money for the second year is Rs 880 and
for the third year it is Rs 968. Find the rate of interest and
the original money.
25. The simple interest on a certain sum for 3 years is Rs
150 and the compound interest on the same sum at the same rate for 2 years
is Rs 110. Find the rate of interest and the principal.
26. A sum of money lent at C.I. on 1st April 96 amounts to
Rs 2420 on 1st April 98 and to Rs 2662 on 1st
April 99. Find the rate of interest and the sum.
27. The simple interest in 3 years and the compound
interest in 2 years on a certain sum at the same rate are
Rs 1200 and Rs 832 respectively. Find (i) the rate of
interest, (ii) the principal, (iii) the difference between
C.I. and S.I. for three years.
28. The value of a machine depreciates every year at the
rate of 10% of its value. The machine was
purchased for Rs 40000 when new and it was sold for Rs
29160. Find the number of years that the machine was used.
29. A man borrowed a sum of money and agrees to pay off by
paying Rs 3150 at the end of the first year
and Rs 4410 at the end of the second year. If the rate of
compound interest is 5% p.a., find the sum
borrowed.
30. A man borrowed a certain sum of money and paid it back
in 2 years in two equal instalments. If the rate
of compound interest was 4% p.a. and if he paid Rs 676 annually,
what sum did he borrow?
31. A sum of Rs 16400 is borrowed to be paid back in 2
years by two equal annual instalments allowing 5% compound interest. Find
the annual payment.
32. A loan of Rs 4641 is to be paid back by 4 equal annual
instalments. The interest is compounded yearly
at 10%. Find the value of each instalment.
33. A man borrows Rs 6000 at 5% p.a. compound interest. If
he repays Rs 1200 at the end of each year,
find the amount outstanding at the beginning of the third
year.Answers
Solution
1. Rs 6272
2. Rs 5082; Rs 1082
3. (i) 12% (ii) Rs 672 (iii) Rs 6952·64
4. (i) Rs 10560 (ii) Rs 11616 (iii) Rs 2016 (iv) Rs
1056, Rs 105·60 (v) Rs 1161·60
5. Rs 6·08
6. Rs 9856; Rs 1856
7. Rs 7227·56
8. Rs 880
9. Rs 8000
10. Rs 2400
11. Rs 2048
12. 6¼%; Rs 1354·69
13. 5%
14. 10%
15. 3 years
16. 2 years
17. 1½ years
18. (i) Rs 227·25 (ii) Rs 459
19. 8%; Rs 725
20. Rs 12000; Rs 3600, Rs 3972
21. Rs 6000
22. Rs 600; Rs 196·60
23. 10%
24. 5% p.a., Rs 9600
25. 5% p.a., Rs 4000
26. 10%, Rs 8000
27. 20%; Rs 250
28. 10%, Rs 2000
29. (i) 8% (ii) Rs 5000 (iii) Rs 98·56
30. 3 years
31. Rs 7000 32. Rs 1275 33. Rs 8820 34. Rs 1464·10 35. Rs
4155
No comments:
Post a Comment